
growth-too-marshal Documentation
Release 0

Leo Singer

Apr 22, 2021

CONTENTS:

1 Installation 3
1.1 Supported Python versions . 3
1.2 Install using Conda for development and testing . 3

2 Configuration 7

3 Running the ToO Marshal 9

4 Contributing 11
4.1 Code style . 11
4.2 Documentation . 11

5 Deployment 13
5.1 Getting the Docker image . 13
5.2 Running the Marshal . 13
5.3 Troubleshooting . 14

6 Indices and tables 15

Index 17

i

ii

growth-too-marshal Documentation, Release 0

This is the manual for the GROWTH Target of Opportunity Marshal, or ToO Marshal for short. It is a platform that
has been developed by the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration in
order to coordinate follow-up observations of multimessenger transients. The ToO Marshal’s responsibilities include:

1. Ingest alerts for astrophysical multimessenger transients from LIGO/Virgo, IceCube, Fermi, Swift, and other
experiments.

2. Notify on-duty GROWTH astronomers when multimessenger transients occur that meet triggering criteria for
science programs.

3. Plan optimal observations for a heterogeneous network of ground-based telescopes including ZTF, DECam,
KPED, Gattini, and GROWTH-India.

4. Submit observations to robotic telescope queues and monitor the progress of observations.

5. Provide a central interface for vetting candidates from these facilities in combination with external data sources
including the Census of the Local Universe (CLU) galaxy catalog.

6. Automatically compose GCN Circular astronomical bulletins.

Note: Caveat emptor: This repository has been made publicly available in the spirit of open-source software. How-
ever, much of the code is very specific to the particular facilities, instruments, and data sources that we are using, and
may not be immediately generalizable.

CONTENTS: 1

growth-too-marshal Documentation, Release 0

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

1.1 Supported Python versions

The growth-too-marshal project requires Python 3.6.

1.2 Install using Conda for development and testing

These instructions use the Miniconda Python distribution and are suitable for installing growth-too-marshal for devel-
opment and testing on any Linux or macOS machine. If you already have Miniconda or Anaconda installed, then skip
the first two steps.

1. Download the 64-bit Python 3 installer for Miniconda for your operating system.

• If you are on Linux, run this command:

$ curl https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh >
→˓ miniconda.sh

• If you are on macOS, run this command:

$ curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
→˓> miniconda.sh

2. Run the Miniconda installer:

$ sh miniconda.sh

Agree to the terms and conditions and install to the directory of your choice. No need to run sudo here if you
are installing for local development. By default, it will install into ~/miniconda3, which is just fine.

When the installer asks, Do you wish the installer to initialize Miniconda3 in your
~/.bash_profile ? [yes|no], I suggest answering no.

Note: For unattended, non-interactive installation, you can add the -b option to automatically agree to the
license terms:

$ sh miniconda.sh -bf

3. Create a new Conda environment with this command:

3

https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html

growth-too-marshal Documentation, Release 0

$ ~/miniconda3/bin/conda create -ym --prefix=~/growth-too-marshal python=3.6

4. “Activate” the environment to add it to your current shell session:

$ source ~/miniconda3/bin/activate ~/growth-too-marshal

5. Next, we will install several pre-built Python packages using conda itself:

$ conda config --add channels anaconda
$ conda config --add channels conda-forge
$ conda install -y astropy astropy-healpix celery ephem flask flask-login flask-
→˓mail flask-sqlalchemy flask-wtf flower healpy humanize h5py ipython ligo-
→˓gracedb ligo-segments ligo.skymap lxml networkx pandas passlib postgresql
→˓psycopg2 pygcn pytest pytz pyvo redis redis-py sphinx sqlalchemy sqlalchemy-
→˓utils

6. Next, we’ll check out the source code with git:

$ git clone https://github.com/growth-astro/growth-too-marshal.git ~/growth-too-
→˓marshal/src

7. Install the marshal itself, and its remaining dependencies, using pip:

$ pip install -e ~/growth-too-marshal/src

The ToO Marshal is now installed. Optionally, you can run the unit tests at this point to check that everything was
installed correctly:

$ cd ~/growth-too-marshal/src
$ python setup.py test

Now, proceed to the next section to configure the PostgreSQL database.

1.2.1 Configure PostgreSQL

The ToO Marshal uses a PostgreSQL database to store all of its data. Follow these instructions to initialize, start, and
populate the PostgreSQL database.

Note: These instructions are suitable for using the Conda installation of PostgreSQL. Advanced users might want
to adapt these instructions to their own needs by using a PostgreSQL database that is installed and managed by their
package manager such as apt-get or port.

1. Initialize PostgreSQL by running this command:

$ initdb -D ~/growth-too-marshal/var/lib/postgresql

2. Start the PostgreSQL server:

$ pg_ctl -D ~/growth-too-marshal/var/lib/postgresql start

3. Create an empty database for the ToO Marshal:

$ createdb growth-too-marshal

4. The ToO Marshal provides a tool to create and populate its tables.

4 Chapter 1. Installation

https://www.postgresql.org

growth-too-marshal Documentation, Release 0

• (Recommended for development) To create the tables and populate them with some sample events and a
sample user account:

$ growth-too db create --sample

• Or, to create the tables without any sample events or user accounts:

$ growth-too db create

The PostgreSQL database is now initialized, running, and populated. Proceed to the next section to start Redis.

1.2.2 Configure Redis

The ToO Marshal uses Redis as a backend for its Celery asynchronous task queue for managing background jobs. To
start Redis, run this command:

$ redis-server --daemonize yes

The Redis server is now running. Proceed to the next section for application configuration.

1.2.3 Application configuration for development

There are a few last steps to complete the configuration of the ToO Marshal for development and testing.

1. The GROWTH ToO Marshal fetches user passwords from an htpasswd file. Create an htpasswd file with a
password for the sample user fritz (as in Fritz Zwicky, of course) by running this command and entering a
password:

$ growth-too passwd fritz

1.2. Install using Conda for development and testing 5

https://redis.io
http://www.celeryproject.org
https://httpd.apache.org/docs/2.4/programs/htpasswd.html
https://en.wikipedia.org/wiki/Fritz_Zwicky

growth-too-marshal Documentation, Release 0

6 Chapter 1. Installation

CHAPTER

TWO

CONFIGURATION

Listing 1: application.cfg

Sample application.cfg file

Server name for the Marshal
Note: Without this, server name will default to localhost.
SERVER_NAME = 'skipper.caltech.edu:8081'

Default email that receives notifications
Note: Without this, email alerts will be broken.
EMAIL_TOO = "XXXXXXXXXXXXXXX@gmail.com"
GMail based username and password
MAIL_USERNAME = "XXXXXXXXXXXXXX@gmail.com"
MAIL_PASSWORD = "XXXXXXXXXXXXXXXX"

Twilio account parameters
Note: Without this, phone and text alerts will be broken.
TWILIO_ACCOUNT_SID = 'XXXXXXXXXXXXXXXXXXXXXXXXX'
TWILIO_AUTH_TOKEN = 'XXXXXXXXXXXXXXXXXXXXXXXXX'
TWILIO_FROM = 'XXXXXXXXXXXXXXXXXXXXX'

Listing 2: .netrc

Sample .netrc file
Without this, access to TAP interface will be broken (i.e.
reference image coverage, observations, etc.).
machine irsa.ipac.caltech.edu login XXXXXXXXX password XXXXXXXXXXXXX

7

growth-too-marshal Documentation, Release 0

8 Chapter 2. Configuration

CHAPTER

THREE

RUNNING THE TOO MARSHAL

Use the growth-too command line tool for starting and managing the ToO Marshal. The growth-too tool has a
number of subcommands. The table below is a quick guide to the most useful commands for development and testing.

Task Command line
Web application
Run web app growth-too run --with-threads
Run web app (debugger enabled) FLASK_ENV=development growth-too run

--with-threads
Database
Initialize database growth-too db create
Initialize database, populate with example
events

growth-too db create --sample

Wipe database growth-too db drop
Wipe database, then initialize again growth-too db recreate
Background processing
Run Celery worker growth-too celery worker --loglevel info
Run GCN listener growth-too gcn
Run periodic task scheduler growth-too celery beat
Run Flower console growth-too celery flower
Admin
Enter Python console growth-too shell
Add user/password growth-too passwd

9

growth-too-marshal Documentation, Release 0

10 Chapter 3. Running the ToO Marshal

CHAPTER

FOUR

CONTRIBUTING

Contributors may familiarize themselves with Celery itself by going through the Flask Quickstart and First Steps with
Celery tutorials.

4.1 Code style

Code should be written in the PEP 8 style and must pass linting by Flake8. To check code style, run the following
commands in the top of your source directory:

$ pip install flake8 pep8-naming
$ flake8 --show-source .

4.2 Documentation

Documentation strings should be written in the Numpydoc style.

11

https://flask.palletsprojects.com/en/1.1.x/quickstart/#quickstart
https://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html#first-steps
https://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html#first-steps
https://www.python.org/dev/peps/pep-0008
http://flake8.pycqa.org/en/latest/
http://numpydoc.readthedocs.io/

growth-too-marshal Documentation, Release 0

12 Chapter 4. Contributing

CHAPTER

FIVE

DEPLOYMENT

For production, the GROWTH ToO Marshal is deployed using Docker.

5.1 Getting the Docker image

Pull latest Docker image Docker Hub:

docker pull growthastro/growth-too-marshal

Or build the Docker image locally:

docker-compose build

In case you need to manually push a locally built image to Docker Hub:

docker build -t growthastro/growth-too-marshal .
docker push growthastro/growth-too-marshal

5.2 Running the Marshal

Initialize the database and populate it with some sample alerts:

docker-compose run celery db create --sample

Start the ToO Marshal (navigate to http://localhost:8081/ in your browser):

docker-compose up -d

Stop the ToO Marshal:

docker-compose down

13

https://www.docker.com

growth-too-marshal Documentation, Release 0

5.3 Troubleshooting

Run an interactive PostgreSQL shell:

docker-compose run --rm postgres psql -h postgres -U postgres

Run an interactive Python shell:

docker-compose run --rm redis redis-cli -h redis

Run an interactive Flask (Python) shell:

docker-compose run --rm --entrypoint growth-too flask shell

Run an interactive Celery (Python) shell:

docker-compose run --rm celery celery shell

14 Chapter 5. Deployment

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

15

growth-too-marshal Documentation, Release 0

16 Chapter 6. Indices and tables

INDEX

P
Python Enhancement Proposals

PEP 8, 11

17

	Installation
	Supported Python versions
	Install using Conda for development and testing

	Configuration
	Running the ToO Marshal
	Contributing
	Code style
	Documentation

	Deployment
	Getting the Docker image
	Running the Marshal
	Troubleshooting

	Indices and tables
	Index

